
 1

Unit 3
Algorithms

Debugging and Testing

After writing a program, it is important to run the program to ensure it produces the correct
outcome in several different instances. This process is known as testing the program. If the
program does not run as expected, you must find the problem with the code, known as
debugging.

In SNAP, if a program is not working as expected you may need to edit your current blocks or
add additional blocks to correct
the issue.

The expected behavior of the
program to the right is to ask the
user how many numbers they
would like to add, receive that
input from the user, and then
display the total.

However, after running the
program more than once, it
displays an incorrect result.

A good starting point of debugging is to look at how the
variables change as the program runs at the top left of the
stage. Running the program adding two numbers, 15 and 10,
provides the result to the right. This is correct, but to effectively
test the program, you should always run it more than just once.

Next, we’ll add two numbers again, 3 and 2. The result is not as
expected because the sum of 3 and 2 is not 30. Looking at the
totals variable, it appears the value was not cleared from the
last time we ran the program.

Therefore, we now know that another block should be added to ensure the total is reset each
time the program runs to receive the proper result.

 2

To reset this total, we can always make sure is set to
zero each time the program runs. After testing the
program two more times with the same numbers, the
correct result is shown both times. The program is
functioning as expected and the debugging process is
complete.

Correctness of Program

The correctness of a program can be evaluated by how well a program handles different
scenarios. For example, if a program has three different outcomes,
all three outcomes should be reached to ensure the program is
functioning properly. In this simple program, the user is asked for a
number to be compared to zero. As output, the program draws a
less than, greater than, or equals sign and also prints the
information to the user.

Test Cases

A test case outlines how a program
should be run to test a specific
outcome. This example contains a
nested if-else condition and three
possible outcomes. Therefore, three
test cases can be created to verify each
condition is working properly.

Test Case #1 – Less than Zero
For the first test case, we can enter any
number less than zero and should see a less
than sign along with a message that the
number is less than zero. Entering -10 gives
the result to the right. Therefore, the
program works correctly when tested with a
number less than zero.

Test Case #2 – Greater than Zero
Similarly, we can enter any greater than zero
and should see a greater than sign along with a message that the
number is greater than zero. Entering 25 gives the result to the
right. Therefore, the program works correctly when tested with a
number greater than zero.

 3

Test Case #3 – Equal to Zero
For the last case, we must enter zero and should see an equals sign along with a message that
the number is equal to zero. Entering 0 gives the result to the right. Therefore, the program
works correctly when tested with zero.

Since our program was verified as working using the test cases of each possible outcome, we
can assume that the program’s logic is correct.

