
Unit 2
Computing Practice and Programming

Part 4: Analyzing Programs

Debugging and Testing

After writing a program, it is important to run the program to ensure it produces the correct

outcome in several different instances. This process is known as testing the program. If the

program does not run as expected, you must find the problem with the code, known as debugging.

In SNAP, if a program is not working as expected you may need to edit your current blocks or add

additional blocks to correct the issue.

The expected behavior of the

program to the right is to ask the

user how many numbers they

would like to add, receive that

input from the user, and then

display the total.

However, after running the

program more than once, it

displays an incorrect result.

A good starting point of debugging is to look at how the variables

change as the program runs at the top left of the stage. Running

the program adding two numbers, 15 and 10, provides the result

to the right. This is correct, but to effectively test the program, you should always run it more than

just once.

Next, we’ll add two numbers again, 3 and 2. The result is not as

expected because the sum of 3 and 2 is not 30. Looking at the

totals variable, it appears the value was not cleared from the last time we ran the program.

Therefore, we now know that another block should be added to ensure the total is reset each time

the program runs to receive the proper result.

To reset this total, we can always make sure is set to zero

each time the program runs. After testing the program

two more times with the same numbers, the correct

result is shown both times. The program is functioning as

expected and the debugging process is complete.

Correctness of Program

The correctness of a program can be evaluated by how well a program
handles different scenarios. For example, if a program has three different
outcomes, all three outcomes should be reached to ensure the program is
functioning properly. In this simple program, the user is asked for a number
to be compared to zero. As output, the program draws a less than, greater
than, or equals sign and also prints the information to the user.

Test Cases

A test case outlines how a program should be
run to test a specific outcome. This example
contains a nested if-else condition and three
possible outcomes. Therefore, three test
cases can be created to verify each condition
is working properly.

Test Case #1 – Less than Zero
For the first test case, we can enter any
number less than zero and should see a less
than sign along with a message that the number is
less than zero. Entering -10 gives the result to the
right. Therefore, the program works correctly
when tested with a number less than zero.

Test Case #2 – Greater than Zero
Similarly, we can enter any greater than zero and
should see a greater than sign along with a
message that the number is greater than zero.
Entering 25 gives the result to the right. Therefore,
the program works correctly when tested with a
number greater than zero.

Test Case #3 – Equal to Zero
For the last case, we must enter zero and should see an equals sign along with
a message that the number is equal to zero. Entering 0 gives the result to the
right. Therefore, the program works correctly when tested with zero.

Since our program was verified as working using the test cases of each
possible outcome, we can assume that the program’s logic is correct.

