
Unit 2
Computing Practice and Programming

Part 2: Connect the Development Cycle of Program

Construction to Problem Solving

Operations in Program

We will show how to implement the sequencing, selection, and iteration algorithms from Unit 3

using SNAP.

Sequencing

A sequencing algorithm follows a set list of steps in order

to produce a result. In this SNAP program, the user is

asked for six grades and then the average of those grades

is calculated. This is a sequence because the program

follows each step of collecting grades to put into a list,

adding those grades from the list, and then calculating the

average in that specific order each time.

Selection

Selection algorithms allow the user to choose a different outcome based on information defined

within the program. A typical way of implementing a selection algorithm is through an if or if-else

statement.

An if statement in SNAP looks like this:

An if-else statement in SNAP looks like this:

The following is an implementation of the example selection algorithm from Unit 3. In this example,

the user is asked for two numbers. The selection algorithm is performed based on which number is

larger using an if-else statement. If the first number is larger, the condition is true, and the first code

is executed. However, if the second number is larger, the statement is false and the code under the

else is executed.

condition

code that is executed if condition is true

condition

code that is executed if condition is true

code that is executed if condition is false

Iteration

Iteration algorithms allow the same code to be repeated several times to accomplish a task. In

SNAP, this iteration can be accomplished with the repeat control.

The following is an implementation of the example iteration algorithm from Unit 3. In this program,

the user is asked for how many numbers they would like to add. That number is then passed into

the repeat control to continue asking the user for a number to add until it reached that number.

Finally, their result is printed, and the total is cleared.

Flow Charts

Flowcharts are important in programming for understanding how the code works. Any program

can be represented with a flow chart to see how data is moving throughout the process of running

the code. Each of the three algorithms demonstrated above can also be shown in a flowchart that

looks very similar to the SNAP program that is being executed.

Sequence Flowchart

In the sequencing algorithm, since the data flows

the same way each time, it can be represented in a

straight flow chart.

Selection Flowchart

A selection flowchart looks

slightly different as there are

multiple outcomes for the

program to reach. As shown

here, if X is greater than Y, the

option on the left is chosen.
However, if X is not greater

than Y, the option on the right

is chosen.

Iteration Flowchart

Through iteration, the flowchart

shows that code is being run

multiple times. In our example, the

code continues asking for numbers

and adding them until it reaches

the number of times specified by
the user at the beginning of the

program.

