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Unit 1 
Computer Science as Applied Mathematics  

 

 

Functions 
 
In mathematics a function can be though of as a black box that takes in a set of inputs, 
performs some operation(s) on them, and produces a single output. 
 

 
 
A function has a domain, which is a set of x-values that it can accept, and a range, or a set of 
f(x) values it can produce.  
 
Example function: f(x) = x 
domain: all real numbers 
range: all real numbers 
this function does nothing to its input, but it is still a function. 
 
Example function: f(x) = x^2 
domain: all real numbers: 
range: [0, inf) 
this function squares its input. Since you cannot square a number and get a negative result, its 
range is limited to 0 and positive reals. 
 
Example function: f(x) = 1/x 
domain: (-inf, 0)U(0, inf) 
range: all real numbers 
This function’s domain does not include zero because you cannot divide by zero. The function 
does not know how to process x = 0. We say f(0) is undefined. 
 
Graphing functions: 
 
To graph a mathematical function, we pick a set of x values, find f(x) for each x value, and plot 
them. The set of x values we pick is TOTALLY ARBITRARY, but it will affect how the graph looks. 
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It is important to pick a scale that will display that function’s graph well. For example: if we pick 
X: [-100, -99], Y: [52, 53] and we graph y=x, we won’t even see the function’s graph! The graph 
of y=x does not lie in this part of the coordinate plane.  
 
Example: 
Let’s graph y = 1/x 
For our set of x-values, lets choose {-4, -2, -1, -0.5, -0.25, 0.25, 1, 2, 4} 
For our scale, let’s choose x:[-4, 4], y:[-4, 4] 
 

When x = -4, f(x) = -1/4 So we plot the ordered pair: (-4, -1/4)   

When x = -2, f(x) = -1/2 So we plot the ordered pair: (-2, -1/2)  
 
 

When x = -1, f(x) = -1/1 So we plot the ordered pair: (-1, -1)  
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When x = -0.5, f(x) = -2 So we plot the ordered pair: (-1/2, -2)  
 
 

When x = -0.25, f(x) = -4 So we plot the ordered pair: (-1/4, -4)  
 
 

Doing a similar process with x = {0.25, 0.5, 1, 2, 4} yields  
 

You can draw a line to connect the dots to see the shape more clearly.  
 
This process can be formalized in an algorithm that is the basis for the functionality of all 
graphing calculators 
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Example Algorithm 3 (Function Grapher) 

Description: This algorithm graphs a function f given the range of x-Values V 
Input:  A function, f, a range x-values V 
Output: The graph of f 

1 Graph(f, V) 
2  x = the first value in V 
3  while (x <= the largest value in V) 
4   y = f(x) 
5   plot (x,y) 
6   if ( x > the first value in V ) 
7    draw a line from (x-1, f(x-1)) to (x,y) 
8   increment x by 1 
 
Notice the conditional operation on lines 6 and 7. In short, this conditional statement draws a 
line from the last point we plotted to the current one we just plotted. 
 
It tests x to see if it is greater than the first value in V. If it is not, then the iterative operation on 
line 3 has not yet completed its first operation. (i.e. we have only plotted one point.) We don’t 
want to draw a line between the point we plotted and the last point we plotted if we’ve only 
plotted 1. However, if x is greater than the first Value in V, then the iterative operation on line 3 
must have completed at least once, and we must have drawn at least one point! This means we 
can draw a line between the current point and the previous point.  
 
Also: Notice that line 7 is very vague. It simply says “draw a line from … to …” If you typed that 
line into your computer, it will have no idea what to do, but that is ok. When writing algorithms, 
we have the freedom to be as abstract or vague as we want. That is to say, at this point in 
developing an algorithm, we don’t care how exactly to draw a line from point A to B on a 
computer screen. We just know that it must be done. We can expand on line number 7 later. 
 
Here is an equivalent flow chart for the algorithm: 
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Equations 
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Functions and equations are very similar. The difference can be thought of as “Functions tell 
you how to map a domain to a range, while equations tell you how two or more variables are 
related.” 
 
Typically we use equations to solve for unknown values (e.g. solve for x), while we use functions 
to calculate some useful value given some input(e.g. calculate y, given x). 
 
In most cases, algorithms can be developed to solve a mathematical equation. We will focus on 
the quadratic equation.  
 
Recall: The quadratic equation gives us the values for the roots a degree-2 polynomial. 
 
More formally stated, if 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 then the solutions to y = 0 are  
 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 
From the definition of this equation we can gather several things: 
 
(1)  The solutions to this equation are entirely dependent on the coefficients a, b, and c of the 
standard-form equation: 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐.  
 
(2) There may not be any real solutions to the quadratic equation. (What if the thing under the 
square root (the discriminant) is negative?)  
 
(3) This equation may have 0, 1, or 2 unique solutions. (What if the discriminant is 0?) 
 
Since we have three possible outcomes, we cannot use a typical if-else statement. In this 
scenario, we will continue evaluating the logic by placing an additional if statement inside of the 
previous else statement. This is known as a nested if statement. 
 
From these three truths and the definition of the quadratic equation, we can come up with the 
following algorithm: 
 
Example Algorithm 3 (Quadratic solver) 
Description: This algorithm solves for the roots of a degree-2 polynomial if they exist, given 
the coefficients of the standard-form equation 
Input:  a, b, and c—real numbers  
Output: The solutions to x = 0 if x = ax^2 + bx + c 
1 Solve_QDR(a, b, c) 
2  discriminant = 𝑏2 − 4𝑎𝑐 
3 
4 if ( discriminant < 0 ) 
5  print(“There are no real solutions”) 
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6 else 
7  if(discriminant = 1) 

8   sol. 1 = 
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
 

9   print(sol. 1) 
10  else 

11   sol. 1 = 
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
 

12   sol. 2 = 
−𝑏−√𝑏2−4𝑎𝑐

2𝑎
 

13   print(sol. 1, sol. 2) 
 
Initially, the discriminate is calculated. If this number is less than zero, there are no real 
solutions. If the number is greater than zero, we must evaluate two more conditions. If the 
discriminant is equal to one, there is one solution and that solution is displayed. If the 
discriminant is not equal to one, there are two solutions and both are displayed to the user. 
 

 
Modeling and Simulations 
One of the important roles played by computers is simulating the natural world. For example, a 
weather forecast is generated by observing current conditions and letting a computer algorithm 
simulate, based on the patterns we have already observed, how the weather will change. 
Modelling something like climate is incredibly complicated; we do not (and may never) have a 
mathematical description of climate that accounts for all possible variables. The consequence is 
that computer simulation of weather and climate will never be perfect (we have all seen a 
wrong weather forecast). However, weather forecasts remain reliable enough to be useful 
despite their imperfections. It is important to understand that the quality of a simulation 
depends on how well you can model the thing you are simulating.  
 
A very simple (and accurate) model of a physical system is the acceleration of an object due to 
gravity. Near the surface of Earth, an object released from height h will fall towards Earth with 
an acceleration of g = 9.8 m/s2.  
 
The time, t, that it takes for the object to reach the ground is: 

𝑡 = √
2ℎ

𝑔
 

 
So, on earth (when ignoring air resistance), an object released from 100 meters above the 
ground will take: 

𝑡 = √
2 ∗ 100

9.8
≈ 4.5𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

to reach the ground. 
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Although this “simulation” only involves plugging in values for g and h, it demonstrates that 
computers are good at giving us answers to our questions once we can describe the question 
mathematically. 
 
A SNAP program that could model an object falling from any height at any value for any value 
for acceleration due to gravity would look something like the following: 
 

 
 
You may want to ask your students to change this model so that it simulates the time taken for 
the objects to fall on planets other than Earth. Here is a table for values of g that they can use. 

Acceleration Due to Gravity Comparison  

Body  Mass [kg]  Radius [m]  
Acceleration Due  

to Gravity, "g" [m/s²]  
g / g-Earth  

Sun  1.99 x 1030  6.96 x 108  274.13  27.95  

Mercury  3.18 x 1023  2.43 x 106  3.59  0.37  

Venus  4.88 x 1024  6.06 x 106  8.87  0.90  

Earth  5.98 x 1024  6.38 x 106  9.81  1.00  

Moon  7.36 x 1022  1.74 x 106  1.62  0.17  

Mars  6.42 x 1023  3.37 x 106  3.77  0.38  

Jupiter  1.90 x 1027  6.99 x 107  25.95  2.65  

Saturn  5.68 x 1026  5.85 x 107  11.08  1.13  

Uranus  8.68 x 1025  2.33 x 107  10.67  1.09  

Neptune  1.03 x 1026  2.21 x 107  14.07  1.43  

Pluto  1.40 x 1022  1.50 x 106  0.42  0.04  

( From http://www.aerospaceweb.org/question/astronomy/q0227.shtml) 
 

http://www.aerospaceweb.org/question/astronomy/q0227.shtml

