
 1

Unit 1
Computer Science as Applied Mathematics

Mathematics

Functions

A function can be thought of as a black box that accepts input, performs an operation, and

produces a single output.

Typically, the notation used to express a function is called “function notation.” In function

notation, a function has a name, arguments, and a definition. The notation: 𝑓(𝑥) is read aloud

as “f of x.”

Consider the function: 𝑓(𝑥) = 𝑥2 + 1

𝑓 (𝑥) = 𝑥2 + 1

Name Arguments Definition

Properties of Functions

• Domain – the set of all possible input values a function can receive.

• Range – the set of all possible output values a function can return

Computers allow functions to be defined in many equivalent ways. The first definition is very

short and concise, while the third is cryptic and hard to understand. Becoming proficient at

writing concise and efficient code is an important part of computer science.

Functions in Computing

Until now, functions covered have been purely mathematical functions. That is, they describe

how to process a single real number as input and produce a single real number as output. Also,

 2

we have been limited to mathematical operations like addition, exponentiation, multiplication,

trigonometric functions, etc.

While these basic mathematic functions can be replicated easily in computers, functions are

much more versatile and powerful.

In the realm of computing, functions are typically segments of code that are called upon when

they are needed. They accept input, or arguments, and produce output just like mathematical

functions. Below are some notable differences between traditional mathematical functions and

functions as they exist in computers.

• Wide variety of inputs and outputs

Functions are no longer limited to single number input and single number output. The

input and output of a function can be any type of data.

A function can be defined in computers that accepts a string of characters as input,

reverse the string of characters, and outputs the reversed string.

A function can be defined that accepts a list of numbers, sorts them, and outputs the

sorted list.

A function can be defined that accepts height and weight as inputs, and calculates body-

mass index (BMI)

 3

Many Ways to Define a Function

When defining mathematical functions, function notation is used. Defining functions to

a computer requires the use of a programming language—a standard set of instructions.

There are many of these programming languages and even more equivalent ways to

define a function.

The following is the function 𝑓(𝑥) = 𝑥2 defined in the python programming language in

3 different ways:

#first way

def f(x):

 return x * x

#second way

def f(x):

 return math.pow(x,2)

#third way

def f(x):

 result = 0

 for i in range(0, x):

 result += x

 return result

If the goal were to simply calculate 𝑥2 + 2𝑥 + 1 for 𝑥 = 3, then it would make sense to state

the problem in terms of functions.

Given 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1, what is 𝑓(3)?

Equations

Equations are useful tools for describing how two or more quantities are related. Equations are

very similar to functions. The important difference between equations and functions is that

 4

equations explain how two quantities are related, while functions explain how to calculate an

output given an input.

Operations in Algorithm (8, 16, 17)- Alg, Flow Chart, Seq, Sel, Ite, Flow Chart for each

Algorithms are descriptions of how to solve problems. In some ways they’re like a recipe for making

food: they’re just a list of steps to follow.

For example, whenever you multiply two numbers together, you follow an algorithm taught to you in

elementary school. First, you multiply the column on the right, writing down the ones digit below and

carrying the tens place for the next column. You repeat this for every column.

Computers solve problems by performing algorithms that their programmers specified. Whenever you

search for something on Google, for example, you cause computers to follow a set of steps that

eventually leads to them giving you a list of things on the internet that matched your search.

Operations

When designing an algorithm, one must think about what input is involved in the algorithm, what

problem the algorithm will solve, and how the algorithm should output a solution. In the following

examples of algorithms, we will include a brief description of what it does, define the input and output,

and then write the algorithm in pseudocode with each line numbered. Pseudocode is a way to write

algorithms in a more human-readable way without worrying about syntax.

Sequencing

Sequential operations are operations that do a single well-defined task.

Example: Add 3 cups of water to the mixture

 Increase the value of x by 1

Example Algorithm (Average Grade)

Description: This algorithm calculates the average grade of a student taking 6 classes.

Input: G1, G2, …, G6 The set of numeric grades of the student’s 6 classes

Output: avg, the numeric average grade of the student

 5

1 avg(G1, G2, …, G6)

2 sum = G1

3 sum = sum + G2

4 sum = sum + G3

5 sum = sum + G4

6 sum = sum + G5

7 sum = sum + G6

8 average = sum / 6

9 return average

The example uses only sequencing to calculate the average grade of a student with 6 classes. If a

student’s grades were 0.98, 0.76, 0.75, 0.80, 0.90, and 0.88, then

avg(0.98, 0.76, 0.75, 0.80, 0.90, 0.88)

solves the problem of determining their average grade. With these values as input, we see that at line 8,

the value of the variable average will be 0.845. The next instruction is to return average, or rather,

signify that the current value of average is the answer to the problem.

Selection

Selection, or conditional operations are operations in which you select an operation based on a

condition. These conditions are typically a Boolean expression. Recall that Boolean expressions are

logical expressions which evaluate to either true or false.

Example: If the mixture is too thick, then add ½ cup of water.

 If x > 10 then

print “x is larger than 10”

 else

 print “x is not larger than 10”

 6

Example Algorithm 2 (maximum of two numbers)

Description: This algorithm calculates the maximum of two numbers

Input: X and Y, two real numbers

Output: The maximum of X and Y. If X and Y are equal, then the value of both X and Y is

returned.

1 MAX(X, Y)

2 if (X > Y)

3 return X

4 else

5 return Y

This example uses a selection to choose the greater value between two numbers. The Boolean

expression, “X > Y” is the condition to the conditional operation on line 2. If the value of “X > Y” is true,

then X must be the maximum, and thus line 3 is performed (and line 5 is not performed). If the value of

“X > Y” is false, then X is either less than or equal to Y—in which case line 3 is skipped and line 5 is

performed. Again, we see the word “return,” which means that the algorithm should report a value as

the answer to the problem.

As an example, the value of MAX(5, 10) is 10, and the value of MAX(55, 10) is 55. As an exercise, try to

apply our definition of the MAX algorithm while substituting these example input values for X and Y.

Iteration

Iterative operations are operations that repeat a certain task or set of tasks until a certain condition is

met. This condition, is again, often a Boolean expression.

Example: Stir the rice until all water is absorbed.

 While x < 10

 increase the value of x by 2

 7

Example Algorithm 3 (Linear Search)

Description: This algorithm searches a list of integers for a given integer X. (This is like

checking every item in a list until we find what we are looking for.)

Input: A list of Integers L, an Integer N that is the size of the list, and an Integer X

Output: The Algorithm returns true if X is present in the list, L. It returns false otherwise.

1 Search(L, N, X)

2 i = 1

3 while (i ≤ N)

4 if(Li == X)

5 return true

6 else

7 i = i + 1

8

9

10 return false

Example algorithm 3 is a famous algorithm called Linear Search that uses iteration, sequencing, and

selection to search a list for an occurrence of an integer. It is very important to note that the entire

conditional operation of lines 4-7 is repeated as part of the iterative operation on line 3.

This algorithm will initially set 𝑖 = 1. This variable 𝑖 will be used as an index into the list we are searching

through. The algorithm instructs us to keep checking the next spot (or rather, increasing values for the

index 𝑖) until the item at the current spot in the list is equal to what we are looking for. If 𝑖 exceeds 𝑁

then we have checked every spot without success, so the algorithm exits out of the iterative operation

on line 3 and instead performs line 10, which says to report that the item was not in the list.

Flow Charts

 8

Flowcharts are another way of representing algorithms. They are useful in showing the “flow” of an

algorithm. Table 1 shows some basic shapes that are used when creating a flowchart. It is important to

use the correct shape to avoid confusion and an incorrect representation of an algorithm.

Basic Shapes for a Flowchart

Shape Name Meaning

 Flow line An arrow pointing from one symbol to another represents the
direction of the flow of the algorithm

Process A rectangle represents an action that is performed.

 Decision A diamond represents a Boolean test. There will be two
branches, an arrow pointing to what happens when the
expression evaluates to true and an arrow pointing to what
happens when the expression evaluates to false

Input / Output A parallelogram is used when receiving input or displaying
output

Terminal Circles or ovals are used for the start of a program and the
end of a program

 Connector When several arrows point to the same shape, a circular
connector can be placed so that the arrows intersect at the
connector, and a single arrow points from the connector to
the shape.

Table 1. shows the basic shapes used in making flowcharts and what they represent.

We will now represent the previous sequencing, selection, and iteration examples with flowcharts.

Sequencing

 9

Selection

 10

Iteration

 11

