
 1

Unit 1
Computer Science as Applied Mathematics

Different Number Systems
The number system that we are used to is the decimal system. We are taught the decimal system from

elementary school, but did you know that there are other number systems as well? In computer science,

the three most important number systems are decimal, binary, and hexadecimal.

This section will be using the term digit to mean a single character (number, letter, symbol, etc.) that

represents a certain quantity.

Example: The digit ‘3’ may represent this quantity of dots: * * *.

The digit ‘§’ may represent this quantity of dots: * * * *.

The digit ‘F’ may represent this quantity of dots: * * * * * * * * * * * * * * *.

Decimal Number System:

A number system of base 10,

meaning that there are 10

individual digits, 0-9, that can

be used to represent any

number.

Example: The number thirteen in

decimal is represented using a 1

and a 3 (13).

Binary Number System:

A number system of base 2,

meaning that there are 2

individual digits, 0 and 1, that

can be used to represent any

number.

Example: The number thirteen

in binary is represented using

only 1s and 0s (1101).

Hexadecimal Number System:

A number system of base 16,

meaning that there are 16

individual digits, 0-9 and A-F, that

can be used to represent any

number.

Example: The number thirteen in

hexadecimal is represented by the

digit D. (D)

In binary, a digit is called a bit. When there are four bits together, it is called a nibble or a half-byte.

Since a 4-bit sequence is called a half-byte, it may be obvious that and 8-bit sequence is a byte.

Representing Numbers in Different Number Systems

 2

When binary numbers get large, it can be hard to read. It

is common practice to separate them into nibbles for

readability. Start from the right and move left. Leading

zeros may be added to the leftmost group to make it 4

bits long.

It isn’t always clear what number system was used to

write a number.

Example: “10” represents the quantity:

* * in binary (base 2)

* * * * * * * * * * in decimal (base 10)

* * * * * * * * * * * * * * * * in hexadecimal (base 16)

For this reason, we use a subscript to indicate which base

a number is written in.

Example: We know that 102 is a binary number because

of the subscript 2 following the number. We know that

1016 is a hexadecimal number because of the subscript

16. We know that 1010 is a decimal number because of

the subscript 10.

When learning a new number system, it is helpful

to start with learning to count in that system. We

already know how to count in decimal, but what

about binary and hexadecimal?

Fig. 1 shows how to represent the

numbers (or how to count from) one

through thirty in decimal, binary, and

hexadecimal.

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 0001 0000 10

17 0001 0001 11

18 0001 0010 12

19 0001 0011 13

20 0001 0100 14

21 0001 0101 15

22 0001 0110 16

23 0001 0111 17

24 0001 1000 18

25 0001 1001 19

26 0001 1010 1A

27 0001 1011 1B

28 0001 1100 1C

29 0001 1101 1D

30 0001 1110 1E
Fig 1. A table of the numbers one through

thirty represented in decimal, binary, and

hexadecimal

 3

Converting Base 2 numbers to Base 10 numbers

Take the rightmost digit of a binary number. Multiply it by 20. Take the next digit to the left and multiply

it by 21. Continue with all of the digits, incrementing the power of 2 for each one. Now, add all of your

answers together. That is the decimal representation of the binary number you started with.

Example: 001101012 to decimal

 0 0 1 1 0 1 0 1

 = 0(27) + 0(26) + 1(25) + 1(24) + 0(23) + 1(22) + 0(21) + 1(20)

 = 0 + 0 + 32 + 16 + 0 + 4 + 0 + 1

= 5310

Converting Base 16 numbers to Base 10

Take the rightmost numeral of a hexadecimal number. Multiply it by 160. Take the next numeral to the

left and multiply it by 161. Continue with all of the digits, incrementing the power of 16 for each one. For

any letter numerals, rewrite them in their decimal form. A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15.

Now, add all of your answers together to get the decimal representation of the hexadecimal number

you started with.

Example: E4D116 to decimal

 E 4 D 1

 = E(163) + 4(162) + D(161) + 1(160)

 = 14(163) + 4(162) + 13(161) + 1(160)

 = 57344 + 1024 + 208 + 1

= 5857710

Modulus

Now we can represent binary and hexadecimal numbers in a number system that we understand more

easily. It is also important to know how to represent our decimal numbers as binary and hexadecimal.

To do this, we need to know the modulus operator. The modulus operator is an operator just like

multiplication, division, addition, and subtraction.

The modulus operator is defined: x mod y = the remainder of x / y

 4

Example:

4 mod 6  4 / 6 = 0 with remainder 4  4 mod 6 = 4

18 mod 6  18 / 6 = 3 with remainder 0  18 mod 6 = 0

9 mod 2  9 / 2 = 4 with remainder 1  9 mod 2 = 1

Converting Base 10 numbers to Base 2

Divide the starting number by 2 to get the quotient. Write the remainder is the rightmost digit of your

answer. Next, divide the quotient you got by 2. Write the remainder to the left of the last remainder.

When you get 0 as your quotient, stop here. Write the remainder as the leftmost digit in your answer.

Example: 3810 to binary

 38 / 2 = 19 with remainder 0

 19 / 2 = 9 with remainder 1

 9 / 2 = 4 with remainder 1

 4 / 2 = 2 with remainder 0

 2 / 2 = 1 with remainder 0

 1 / 2 = 0 with remainder 1

We got a quotient of 0 so we stop here. Starting from the top, we write the remainders from

right to left. Our answer is 1001102.

Converting Base 10 numbers to Base 16

Divide the starting number by 16 to get the quotient. Make sure to note the remainder off to the side a

little. Next, divide the quotient you got by 16 and note that remainder as well. Continue until you get a

quotient of 0, and then note your last remainder. Rewrite each remainder that is more than 9 as it’s

hexadecimal form (e.q. rewrite 10 as A, 15 as F, etc.). Lastly, start from the bottom and go up writing the

remainders from left to right to get your answer.

Example: 12710 to hexadecimal

 127 / 16 = 7 with remainder 15  remainder F

 5

 7 / 16 = 0 with remainder 7

We got a quotient of 0 so we stop here. We rewrite the remainders in hexadecimal if needed.

Starting from the bottom line going up, we write each remainder from left to write. Our answer

is 7F16.

How are Binary and Hexadecimal Related?

Each hexadecimal digit can be represented by a 4-bit binary sequence (e.g. F16 = 11112, 916 = 10012, etc.),

and any half-byte can be represented by a single hexadecimal digit (e.g. 00012 = 116, 11012 = D16, etc.).

One way to convert between binary and hexadecimal is to first convert the number to decimal and then

convert the decimal number to the other number system. That can be time consuming so we have a few

practical shortcuts that use the relation of binary and hexadecimal.

Converting Base 2 numbers to Base 16

Starting from the right side of the starting binary number, separate it into nibbles. Add leading zeros to

the leftmost group if needed. Convert each nibble into decimal and then into hexadecimal. This will be

much less complicated than what we saw earlier because the number can be no greater than fifteen.

Example: 100110111100102 to hexadecimal

 0010 0110 1111 0010

First we separate the number into 4-bit groups. We added two leading zeros to the number to

make every group 4 digits long.

2 6 15 2

We converted each binary number into its decimal equivalent.

2 6 F 2

We converted each decimal number into its hexadecimal equivalent.

Our answer is 26F216.

Converting Base 16 numbers to Base 2

 6

Separate the hexadecimal number into individual digits. Write each digit as its decimal equivalent and

then write each decimal number as its binary equivalent. Add leading zeros to make each group 4-bits.

Concatenate the numbers to get your answer.

Example: AD4A16 to binary

 A D 4 A

 First we separated the hexadecimal number into individual digits.

 10 13 4 10

 We converted each digit into its decimal form.

 1010 1101 0100 1010

We converted each decimal number into its binary form and added leading zeros to each group

if needed.

 Our answer is 1010 1101 0100 10102.

Why is Binary Used?

As previously mentioned, computers, are essentially millions of electrical circuits. These electrical

circuits can exist in two states: powered and not powered. Since binary has two digits, it is suited to

representing these two states very well.

Why is Hexadecimal Used?

Because hexadecimal codes are much simpler than binary, it is used by humans to shorten binary and

make it more readable. Computers do not use hexadecimal; hexadecimal is translated into binary for

computer use. Some common uses for hexadecimal are for colors, assembly language (we will learn

about this later in Unit 3).

ASCII (American Standard Code for Information Interchange)

Computers see all data as 1’s and 0’s at the lowest level but is fundamentally necessary to represent text

in computers. The problem then arises: how can text be represented with only numbers? The simplest

method would be to just assign an arbitrary number to each letter.

In 1960, the American Standards Association began formal work on doing just that. In 1963, the first

version of the ASCII character encoding scheme was published. It has gone through several revisions

over the years but remains the base of most character encoding schemes today.

 7

The original standard uses 7 bits to represent a character, giving a max of 27 = 128 different characters

under ASCII. Of the original 128 characters, only 94 are printable. 33 are used for control codes that are

obsolete in today’s computers.

Below is a table of the 128 ASCII characters.

From this table, you can tell that the number that represents the character, ‘A’ is 6510 or 4116.

Unicode

128 characters is grossly insufficient for languages like Chinese, which have 1000’s of characters. The

text-encoding standard that is most widely-used today is Unicode. ASCII is a subset of Unicode, meaning

that all ASCII codes are also valid codes in Unicode.

Unicode specifies several different standards for encoding. The following are the most common:

 8

• UTF-8

• UTF-16

• UTF-32

Each of these standards uses the respective number of bits to represent a single character, meaning

UTF-32 has a theoretical maximum of 232 = 4,294,967,296 unique characters. In reality, the most

recent version of Unicode as of 2017, Unicode 10.0, only specifies 136,755 unique characters.

The most popular version of Unicode is UTF-8, used on most webpages. It is a variable-length encoding

scheme, meaning that it can use more 8 bits to represent a character when necessary.

Analyzing Data Collections

In the modern world, massive amounts of data are generated every second by users on the internet. It

becomes of great interest for large companies to analyze this data to gain advantages over their

competitors and improve their business’ effectiveness.

Measuring Data

Before data can be analyzed, it is important to know how data is measured. Just like distance has inches,

data has the bit. Below is a summary of the units of data.

Bit – a single 1 or 0

Nibble – 4 bits

Byte – 8 bits

Kilobyte – 1024 bytes (sometimes rounded to 1000) – 210 bytes

Megabyte – 1024 Kilobytes (sometimes rounded to 1000) – 220 bytes

Gigabyte – 1024 Megabytes (sometimes rounded to 1000) – 230 bytes

Terabyte – 1024 Gigabytes (sometimes rounded to 1000) – 240 bytes

Petabyte – 1024 Terabytes (sometimes rounded to 1000) – 250 bytes

Exabyte – 1024 Petabytes (sometimes rounded to 1000) – 260 bytes

Zettabyte – 1024 Exabytes (sometimes rounded to 1000) – 270 bytes

 9

Data Mining

As of the year 2018, your personal data is no longer your own. When you sign up to use services like

Gmail, Facebook, Twitter, etc. you are agreeing to terms of services that often give Google, Apple,

Microsoft, or other companies the right to collect your personal data and sell it to other companies. This

process is known as data mining.

Most of the time, this process is benign and used for the purposes of advertising, but it does raise

legitimate ethical questions about privacy that are still an area of political discussion.

Types of Data Collected

As of 5/19/2018, if you visit privacy.google.com/your-data.html, you can get a short summary of all the

data google collects on you while you browse the web and use Google’s services. The data mentioned

on that page includes:

• Things you search for
• Websites you visit
• Videos you watch
• Ads you click on or tap
• Your location
• Device information
• IP address and cookie data
• Emails you send and receive on Gmail
• Contacts you add
• Calendar events
• Photos and videos you upload
• Docs, Sheets, and Slides on Drive
• Name
• Email address and password
• Birthday
• Gender
• Phone number
• Country

Each of these pieces of information collected are a unique type of data that can be analyzed in various

ways.

Classification Analysis

Most email services have some sort of spam filter that allow users to mark an email as spam. The same

spam email is typically sent to millions of users. Every time a user marks that email as spam, the spam

filter takes notes unique patterns of text and other indicators that classify that email as spam. After a

 10

few thousand users mark the email as spam, the spam filter program will have “learned” that any emails

like it are more likely to be spam.

This process is not just an example of machine learning, but it is an example of how datamining emails

that are sent and received through Gmail could potentially be used.

In general, classification analysis involves analyzing large sets of data in the hopes of classifying data

points into different categories.

Outlier Analysis

If you have ever logged into your email in a different country or state that is geographically far away

from where you usually log into it, you may have gotten a warning requiring you to enter a special code

texted to you on your phone.

This is a result of outlier analysis. Google, for example, analyzes the IP Addresses that you typically log in

from. Your IP Address typically can be used to get a rough estimate of the geographic region you are in.

If Google notices an outlier in the data—that is an IP address that is associated with a geographic region

that is different from the one you usually log in from, it will trigger an alarm. This could mean that

someone in another country or state has your login credentials and is attempting to login. It could also

mean you are traveling or on vacation.

In general, outlier analysis involves analyzing large sets of data for data points that are very far from the

average. These data points can signal situations that require action—such as a person on the other side

of the world logging into your email.

Other Forms of Data Analysis

There are other, more advanced types of data analysis, but classification and outlier analysis are two of

the most common. Regression analysis is a type of statistical analysis that involves analyzing large sets of

data to find rules that can be used to predict or forecast future trends. This type of analysis is used on

everything from weather forecasting to stock-market speculations.

Data Analysis Techniques

When studying data analysis, there are a few ubiquitous techniques that are used to process massive

sets of data.

 11

Searching

Searching involves looking through a collection of data for a data point that matches a query.

Example: Find the user whose username is “jdoe.”

Searching is involved in nearly every data analyzing operation because to update a data point, you must

first find where that data point is stored.

The study of how to efficiently search through massive collections of data is a classical problem in

computer science. Some algorithms for searching are explored later in the course.

Sorting

Sorting is useful because it makes searching more efficient. Imagine how long it would take to look up a

word in a dictionary if they were not sorted in alphabetical order!

The study of how to efficiently sort a list of items is also a classical problem in computer science.

Statistical Techniques

Statistical techniques like mean, median, standard deviation, variance, and others allow datasets to be

mathematically analyzed and individual data points to be classified. Using statistical techniques can

allow data points to be classified as outliers or classified into different groups.

Example: A company has been suffering from cyber attacks that attempt to access secure servers on its

network. There is a good deal of legitimate traffic to the network that follows regular patterns (e.g. time

of day, length of session, login attempts, etc.)

Wanting to tighten security, the company’s security administrator configures a program to run statistical

analysis on the network traffic and alert him to any traffic that is statistically different than legitimate

traffic.

